A Family of Partial Difference Sets with Denniston Parameters in Nonelementary Abelian 2-Groups

نویسندگان

  • James A. Davis
  • Qing Xiang
چکیده

A k-element subset D of a finite multiplicative group G of order v is called a (v, k, λ, μ)partial difference set in G (PDS) provided that the multiset of ‘differences’ {d1d −1 2 | d1, d2 ∈ D, d1 6= d2} contains each nonidentity element of D exactly λ times and each nonidentity element in G\D exactly μ times. See [11] for background on partial difference sets. We will limit our attention to abelian groups in this paper. In that context, a character of an abelian group is a homomorphism from the group to the multiplicative group of complex roots of unity. The principal character is the character mapping every element of the group to 1. All other characters are called nonprincipal. Starting with the important work of Turyn [16], character sums have been a powerful tool in the study of difference sets of all types. The following lemma states how character sums can be used to verify that a subset of a group is a PDS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalizations of Partial Difference Sets from Cyclotomy to Nonelementary Abelian p-Groups

A partial difference set having parameters (n2, r(n − 1), n + r2 − 3r, r2 − r) is called a Latin square type partial difference set, while a partial difference set having parameters (n2, r(n + 1),−n + r2 + 3r, r2 + r) is called a negative Latin square type partial difference set. In this paper, we generalize well-known negative Latin square type partial difference sets derived from the theory o...

متن کامل

New negative Latin square type partial difference sets in nonelementary abelian 2-groups and 3-groups

A partial difference set having parameters (n2, r(n− 1), n+ r2 − 3r, r2 − r) is called a Latin square type partial difference set, while a partial difference set having parameters (n2, r(n+1),−n+r2+3r, r2+r) is called a negative Latin square type partial difference set. Nearly all known constructions of negative Latin square partial difference sets are in elementary abelian groups. In this pape...

متن کامل

Negative Latin Square Type Partial Difference Sets in Nonelementary Abelian 2-groups

Combining results on quadrics in projective geometries with an algebraic interplay between finite fields and Galois rings, we construct the first known family of partial difference sets with negative Latin square type parameters in nonelementary abelian groups, the groups Z 4 × Z4`−4k 2 for all k when ` is odd and for all k < ` when ` is even. Similarly, we construct partial difference sets wit...

متن کامل

Linking systems in nonelementary abelian groups

Linked systems of symmetric designs are equivalent to 3-class Q-antipodal association schemes. Only one infinite family of examples is known, and this family has interesting origins and is connected to important applications. In this paper, we define linking systems, collections of difference sets that correspond to systems of linked designs, and we construct linking systems in a variety of non...

متن کامل

Partial Difference Sets with Paley Parameters

Partial difference sets with parameters (v,k,k,/x) = (v,(v— l)/2,(v — 5)/4,(v— l)/4) are called Paley partial difference sets. By using finite local rings, we construct a family of Paley PDSs for abelian/7-groups with any given exponent. Furthermore, we prove some non-existence results on Paley PDSs. Using these results, we prove that Paley PDSs exist in a rank 2 abelian group if and only if th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2000